
M_Map: 

Users Guide v1.4 

Contents 
1 Table of Contents (On-line) .................................................................................................................. 3 

2 Getting started ....................................................................................................................................... 4 

3 Specifying projections ........................................................................................................................... 6 

3.1 Azimuthal projections ................................................................................................................... 7 

3.1.1 Stereographic ......................................................................................................................... 8 

3.1.2 Orthographic.......................................................................................................................... 8 

3.1.3 Azimuthal Equal-Area ........................................................................................................... 9 

3.1.4 Azimuthal Equidistant ......................................................................................................... 10 

3.1.5 Gnomonic ............................................................................................................................ 10 

3.1.6 Satellite ................................................................................................................................ 10 

3.2 Cylindrical and Pseudo-cylindrical Projections .......................................................................... 10 

3.2.1 Mercator .............................................................................................................................. 10 

3.2.2 Miller Cylindrical ................................................................................................................ 11 

3.2.3 Cylindrical Equal-Area ....................................................................................................... 11 

3.2.4 Equidistant cylindrical ......................................................................................................... 11 

3.2.5 Oblique Mercator ................................................................................................................ 11 

3.2.6 Transverse Mercator ............................................................................................................ 12 

3.2.7 Universal Transverse Mercator (UTM) ............................................................................... 13 

3.2.8 Sinusoidal ............................................................................................................................ 14 

3.2.9 Gall-Peters ........................................................................................................................... 14 

3.3 Conic Projections ........................................................................................................................ 14 

3.3.1 Albers Equal-Area Conic .................................................................................................... 15 

3.3.2 Lambert Conformal Conic .................................................................................................. 16 

3.4 Miscellaneous global projections ................................................................................................ 16 

3.4.1 Hammer-Aitoff .................................................................................................................... 16 

3.4.2 Mollweide............................................................................................................................ 16 

3.4.3 Robinson.............................................................................................................................. 17 

3.5 Yeah, but which projection should I use? ................................................................................... 18 

3.6 Map scales ................................................................................................................................... 18 

3.7 Map coordinate systems - geographic and geomagnetic. ............................................................ 19 

4 Coastlines and Bathymetry .................................................................................................................. 20 

4.1 Coastline options ......................................................................................................................... 20 

4.2 Topography/Bathymetry options ................................................................................................. 21 

5 Customizing axes ................................................................................................................................ 21 

5.1 Grid lines and labels .................................................................................................................... 21 

5.2 Titles and x/ylabels...................................................................................................................... 24 

5.3 Legend Boxes .............................................................................................................................. 24 

5.4 Scale Bars .................................................................................................................................... 24 

5.5 North Arrow ................................................................................................................................ 25 

6 Adding your own data ......................................................................................................................... 26 

6.1 Drawing lines, text, arrows, patches, hatches, speckles and contours ......................................... 26 

6.2 Drawing images and pcolor ......................................................................................................... 28 

6.3 Drawing shaded relief maps ........................................................................................................ 30 

6.4 Drawing tracklines ...................................................................................................................... 32 

6.5 Drawing range rings and geodesics ............................................................................................. 33 

6.6 Drawing tidal ellipses and wind roses ......................................................................................... 33 

6.7 Converting longitude/latitude to projection coordinates ............................................................. 35 

6.8 Converting projection to longitude/latitude coordinates ............................................................. 35 



6.9 Computing distances between points .......................................................................................... 35 

6.10 Annotation and Mouse Input ....................................................................................................... 36 

6.11 Colour and Colourmaps .............................................................................................................. 37 

6.12 Colourbars with Contourmaps .................................................................................................... 38 

7 More complex maps ............................................................................................................................ 40 

8 Removing features from a map ........................................................................................................... 40 

9 Adding your own coastlines ................................................................................................................ 40 

9.1 Reading and Handling coastline data .......................................................................................... 40 

9.2 ESRI Shapefiles........................................................................................................................... 41 

9.3 Projection Conversions ............................................................................................................... 41 

9.4 Coastline Extractor ...................................................................................................................... 43 

9.5 DCW political boundaries ........................................................................................................... 43 

9.6 Natural Earth Political Boundaries .............................................................................................. 43 

9.7 GSHHS(G) high-resolution coastline database ........................................................................... 43 

9.7.1 Installing GSHHS ................................................................................................................ 44 

9.7.2 Using GSHHS effectively ................................................................................................... 44 

10 Adding your own topography/bathymetry ...................................................................................... 45 

10.1 Sandwell and Smith Bathymetry ................................................................................................. 45 

10.2 TerrainBase 5-minute global bathymetry/topography ................................................................ 46 

10.3 ETOPO 2 or 1-minute global bathymetry/topography ................................................................ 47 

11 M_Map toolbox contents and description ....................................................................................... 48 

12 Known Problems and Bugs ............................................................................................................. 50 

13 OCTAVE Compatibility Issues ....................................................................................................... 51 

14 Changes since last release ............................................................................................................... 51 

 

  



1 Table of Contents (On-line) 
1. Getting started 

2. Specifying projections  

1. Azimuthal projections 

2. Cylindrical and Pseudo-cylindrical projections 

3. Conic projections 

4. Miscellaneous global projections 

5. Yeah, but which projection should I use? 

6. Map scales 

7. Map coordinate systems - geographic and geomagnetic  

3. Coastlines and Bathymetry  

1. Coastline options  

2. Topography/Bathymetry options 

4. Customizing the axes  

1. Grid lines and labels 

2. Titles and x/ylabels 

3. Legend Boxes 

4. Scale bar 

5. North Arrow  

5. Adding your own data  

1. Drawing lines, text, arrows, patches, hatches, speckles, and contours  

2. Drawing images and pcolor  

3. Drawing shaded relief maps  

4. Drawing tracklines 

5. Drawing range rings and geodesics 

6. Drawing tidal ellipses and wind roses  

7. Converting longitude/latitude to projection coordinates 

8. Converting projection to longitude/latitude coordinates  

9. Computing distances between points 

10. Annotation and mouse input  

11. Colour and Colormaps  

12. Colourbars with Contourmaps 

6. More complex maps 

7. Removing features from a map 

8. Adding your own coastlines  

1. Reading and Handling coastline data 

2. ESRI Shapefiles  

3. Projection conversions  

4. Coastline Extractor 

5. DCW political boundaries 

6. Natural Earth political boundaries 

7. GSHHS(G) high-resolution coastline database  

1. Installing GSHHS 

2. Using GSHHS effectively 

9. Adding your own topography/bathymetry  

1. Sandwell and Smith Bathymetry 

2. TerrainBase 5-minute global bathymetry/topography  

3. ETOPO 2- and 1- minute global bathymetry/topography  

10. M_Map toolbox contents and description 

11. Known Problems and Bugs 

12. OCTAVE Compatibility Issues  

13. Changes since last release  

https://www.eoas.ubc.ca/~rich/mapug.html#p1
https://www.eoas.ubc.ca/~rich/mapug.html#p2
https://www.eoas.ubc.ca/~rich/mapug.html#p2.1
https://www.eoas.ubc.ca/~rich/mapug.html#p2.2
https://www.eoas.ubc.ca/~rich/mapug.html#p2.3
https://www.eoas.ubc.ca/~rich/mapug.html#p2.4
https://www.eoas.ubc.ca/~rich/mapug.html#p2.5
https://www.eoas.ubc.ca/~rich/mapug.html#p2.6
https://www.eoas.ubc.ca/~rich/mapug.html#p2.7
https://www.eoas.ubc.ca/~rich/mapug.html#p3
https://www.eoas.ubc.ca/~rich/mapug.html#p3.1
https://www.eoas.ubc.ca/~rich/mapug.html#p3.2
https://www.eoas.ubc.ca/~rich/mapug.html#p4
https://www.eoas.ubc.ca/~rich/mapug.html#p4.1
https://www.eoas.ubc.ca/~rich/mapug.html#p4.2
https://www.eoas.ubc.ca/~rich/mapug.html#p4.3
https://www.eoas.ubc.ca/~rich/mapug.html#p4.4
https://www.eoas.ubc.ca/~rich/mapug.html#p4.5
https://www.eoas.ubc.ca/~rich/mapug.html#p5
https://www.eoas.ubc.ca/~rich/mapug.html#p5.1
https://www.eoas.ubc.ca/~rich/mapug.html#p5.2
https://www.eoas.ubc.ca/~rich/mapug.html#p5.2b
https://www.eoas.ubc.ca/~rich/mapug.html#p5.3
https://www.eoas.ubc.ca/~rich/mapug.html#p5.4
https://www.eoas.ubc.ca/~rich/mapug.html#p5.4b
https://www.eoas.ubc.ca/~rich/mapug.html#p5.5
https://www.eoas.ubc.ca/~rich/mapug.html#p5.6
https://www.eoas.ubc.ca/~rich/mapug.html#p5.7
https://www.eoas.ubc.ca/~rich/mapug.html#p5.8
https://www.eoas.ubc.ca/~rich/mapug.html#p5.9
https://www.eoas.ubc.ca/~rich/mapug.html#p5.10
https://www.eoas.ubc.ca/~rich/mapug.html#p6
https://www.eoas.ubc.ca/~rich/mapug.html#p7
https://www.eoas.ubc.ca/~rich/mapug.html#p8
https://www.eoas.ubc.ca/~rich/mapug.html#p8.1
https://www.eoas.ubc.ca/~rich/mapug.html#p8.2
https://www.eoas.ubc.ca/~rich/mapug.html#p8.2b
https://www.eoas.ubc.ca/~rich/mapug.html#p8.3
https://www.eoas.ubc.ca/~rich/mapug.html#p8.4
https://www.eoas.ubc.ca/~rich/mapug.html#p8.5
https://www.eoas.ubc.ca/~rich/mapug.html#p8.6
https://www.eoas.ubc.ca/~rich/mapug.html#p8.6.1
https://www.eoas.ubc.ca/~rich/mapug.html#p8.6.2
https://www.eoas.ubc.ca/~rich/mapug.html#p9
https://www.eoas.ubc.ca/~rich/mapug.html#p9.1
https://www.eoas.ubc.ca/~rich/mapug.html#p9.2
https://www.eoas.ubc.ca/~rich/mapug.html#p9.3
https://www.eoas.ubc.ca/~rich/mapug.html#p10
https://www.eoas.ubc.ca/~rich/mapug.html#p11
https://www.eoas.ubc.ca/~rich/mapug.html#p12
https://www.eoas.ubc.ca/~rich/mapug.html#p13


2 Getting started 

First, get all the files, either as a zip archive or a gzipped tar-file and unpack them. If you are 

unpacking the zip file MAKE SURE YOU ALSO UNPACK SUBDIRECTORIES! Now, start 

up Matlab (version 5 or higher). Make sure that the toolbox is in your path. This can be done 

simply by cd'ing to the correct directory.  

Alternatively, if you have unpacked them into directory /users/rich/m_map (and 

/users/rich/m_map/private), then you can add this to your search path:  

path(path,'/users/rich/m_map'); 

or  
addpath /users/rich/m_map 

To follow along with this document, you would then use a Web-browser to open 

file:/users/rich/m_map/map.html, that is, this HTML document. 

Note: you may want to install M_Map as a toolbox accessible to all users. To do this, unpack the 

files into $MATLAB/toolbox/m_map, add that directory to the list defined in 

$MATLAB/toolbox/local/pathdef.m, and update the cache file using  

rehash toolboxcache 

Instructions for installing an (optional) high-resolution bathymetry database are given in here, 

and instructions for installing the (optional) high-resolution GSHHS coastline database is given 

in here. However, we should first check that the basic setup is OK.  

To see an example map, try this:  

m_proj('oblique mercator'); 

m_coast; 

m_grid; 

This is a line map of the Oregon/British Columbia coast, using an Oblique Mercator projection 

(A few more complex maps can be generated by running the demo function m_demo). 

The first line initializes the projection. Defaults are set for the different projection, so you can 

easily see what a specific projection looks like, but all projections have a number of optional 

parameters as well. To get the same map without using the defaults, you would use  

m_proj('oblique mercator','longitudes',[-132 -125], ... 

           'latitudes',[56 40],'direction','vertical','aspect',.5); 

  

The exact meanings of the various options is given in Section 2. However, notice that longitudes 

are specified using a signed notation - East longitudes are positive, whereas West longitudes are 

negative (Also note that a decimal degree notation is used, so that a longitude of 120 30'W is 

specified as -120.5). 

The second line draws a coastline, using the 1/4 degree database. Coastlines with greater 

resolution can be drawn, using your own database (see also Section 8). m_coast can be called 

with various line parameters. For example,  

https://www.eoas.ubc.ca/~rich/m_map1.4.zip
https://www.eoas.ubc.ca/~rich/m_map1.4.tar.gz
https://www.eoas.ubc.ca/~rich/mapug.html
https://www.eoas.ubc.ca/~rich/mapug.html#p9.3
https://www.eoas.ubc.ca/~rich/mapug.html#p8.6
https://www.eoas.ubc.ca/~rich/mapug.html#p2
https://www.eoas.ubc.ca/~rich/mapug.html#p8


m_coast('linewidth',2,'color','r'); 

draws a thicker red coastline. Filled coastlines can also be drawn, using the 'patch' option 

(followed by any of the usual PATCH property/value pairs: 

m_coast('patch',[.7 .7 .7],'edgecolor','none'); 

draws a coastline with a gray fill and no border. 

The third line superimposes a grid. Although there are many possible options that can be used to 

customize the appearance of the grid, defaults can always be used (as in the example). These 

options are discussed in Section 4. You can get a list of the options using the GET syntax:  

m_grid get 

which acts somewhat like the get(gca) syntax for regular plots. 

Finally, suppose you want to show and label the location of, say, a mooring at 129W, 48 30'N.  

[X,Y]=m_ll2xy(-129,48.5); 

line(X,Y,'marker','square','markersize',4,'color','r'); 

text(X,Y,' M5','vertical','top'); 

m_ll2xy (and its inverse m_xy2ll) convert from longitude/latitude coordinates to those of the 

projection. Various clipping options can also be specified in converting to projection 

coordinates. If you are willing to accept default clipping setting, you can use the built-in 

functions m_line and m_text :  

m_line(-129,48.5,'marker','square','markersize',4,'color','r'); 

m_text(-129,48.5,' M5','vertical','top'); 

Finally (!), we may want to alter the grid details slightly. Note that, a given map must only be 

initialized once.  

clf 

m_proj('oblique mercator');  % repeated here so cut-n-paste simplified 

m_coast('patch',[.7 .7 .7],'edgecolor','none'); 

m_grid('xlabeldir','end','fontsize',10); 

m_line(-129,48.5,'marker','square','markersize',4,'color','r'); 

m_text(-129,48.5,' M5','vertical','top'); 

https://www.eoas.ubc.ca/~rich/mapug.html#p4


 

 

3 Specifying projections  

In order to get a list of the current projections,  

m_proj get 

or 

m_proj('set'); 

Which currently return the following list: 

Available projections are: 

     Stereographic           

     Orthographic  

     Azimuthal Equal-area     

     Azimuthal Equidistant 

     Gnomonic 

     Satellite 

     Albers Equal-Area Conic 

     Lambert Conformal Conic 

     Mercator 

     Miller Cylindrical 

     Equidistant Cylindrical 

     Cylindrical Equal-Area 

     Oblique Mercator 

     Transverse Mercator 

     Sinusoidal 

     Gall-Peters 

     Hammer-Aitoff 



     Mollweide 

     Robinson 

     UTM 

   

If you want details about the possible options for any of these projections, add its name to the 

above command, e.g.  

m_proj('set','stereographic'); 

which returns 

     'Stereographic'                                    

     <,'lon<gitude>',center_long>                       

     <,'lat<itude>', center_lat>                        

     <,'rad<ius>', ( degrees | [longitude latitude] )> 

     <,'rec<tbox>', ( 'on' | 'off' )>                  

  

You can also get details about the current projection. For example, in order to see what the 

default parameters are for the sinusoidal projection, we first initialize it, and then use the 'set' 

option: 

m_proj('sinusoidal'); 

m_proj get 

 

Current mapping parameters - 

  Projection: Sinusoidal  (function: mp_tmerc) 

  longitudes: -90  30 (centered at -30)     

  latitudes: -65  65              

  Rectangular border: off                

   

In order to initialize a projection, you usually specify some location parameters that define the 

geometry of the projection (longitudinal limits, central parallel, etc.), as well as parameters that 

define the extent of the map (whether it is in a rectangular axis, what the border points are, etc.). 

These vary slightly from projection to projection. 

Two useful properties for projections are (1) the ability the preserve angles for differentially 

small regions, and (2) the ability to preserve area. Projections satisfying the first condition are 

called conformal, those satisfying the second are called equal-area. No projection can be both. 

Many projections (especially global projections) are neither, instead an attempt has been made to 

aesthetically balance the errors in both conditions.  

Note: Most projections are currently spherical rather than ellipsoidal. UTM is an ellipsoidal 

projection, and both the lambert conformal conic and albers equal-area conic can be specified 

with ellipses if desired. This is sometime useful when you have data (e.g. from a GIS package) at 

scales of Canadian provinces or US states, which are often mapped using one of these 

projections. It is unlikely that using a spherical earth model will be a problem (or an advantage) 

in normal usage.  

Let's go through the list of available projections: 

3.1 Azimuthal projections  



Azimuthal projections are those in which points on the globe are projected onto a flat 

tangent plane. Maps using these projections have the property that direction or azimuth 

from the center point to all other points is shown correctly. Great circle routes passing 

through the central point appear as straight lines (although great circles not passing 

through the central point may appear curved). These maps are usually drawn with 

circular boundaries. The following parameters specify the center point of an azimuthal 

projection map:  

  

  <,'lon<gitude>',center_long> 

  <,'lat<itude>', center_lat>  

Maps are aligned so that the specified longitude is vertical at the map center, with its 

northern end at the top (but see option rotangle below in order to rotate this 

orientation). Then the extent of the map is defined by  

   <,'rad<ius>', ( degrees | [longitude latitude] )>  

    

Either an angular distance in degrees can be given (e.g. 90 for a hemisphere), or the 

coordinates of a point on the boundary can be specified. Then, 

  <,'rec<tbox>', ( 'on' | 'off' | 'circle' )>  

   

is used to specify the map boundary. The default is to enclose the map in a circular 

boundary (chosen using either of the latter two options), but a rectangular one can also be 

specified. However, rectangular maps are usually better drawn using a cylindrical or 

conic projection of some sort. Finally,  

   <,'rot<angle>', degrees CCW>  

    

rotates the figure so that the central longitude is not vertical.  

THe azimuthal projections include: 

3.1.1 Stereographic  

The stereographic projection is conformal, but not equal-area. This projection is 

often used for polar regions.  

3.1.2 Orthographic  

This projection is neither equal-area nor conformal, but resembles a perspective 

view of the globe.  



 

3.1.3 Azimuthal Equal-Area  

Sometimes called the Lambert azimuthal equal-area projection, this mapping is 

equal-area but not conformal.  

 



3.1.4 Azimuthal Equidistant  

This projection is neither equal-area nor conformal, but all distances and 

directions from the central point are true.  

3.1.5 Gnomonic  

This projection is neither equal-area nor conformal, but all straight lines on the 

map (not just those through the center) are great circle routes. There is, however, 

a great degree of distortion at the edges of the map, so maximum radii should be 

kept fairly small - 20 or 30 degrees at most.  

3.1.6 Satellite  

This is a perspective view of the earth, as seen by a satellite at a specified altitude. 

Instead of specifying a radius for the map, the viewpoint altitude is specified:  

 <,'alt<itude>',altitude_fraction >  

    

the numerical value assigned to this property represents the height of the 

viewpoint in units of earth radii. For example, a satellite in an orbit of radius 3 

earth radii would have an altitude of 2.  

3.2 Cylindrical and Pseudo-cylindrical Projections  

Cylindrical projections are formed by projecting points onto a plane wrapped around the 

globe, touching only along some great circle. These are very useful projections for 

showing regions of great lateral extent, and are also commonly used for global maps of 

mid-latitude regions only. Also included here are two pseudo-cylindrical projections, the 

sinusoidal and Gall-Peters, which have some similarities to the cylindrical projections 

(see below).  

These maps are usually drawn with rectangular boundaries (with the exception of the 

sinusoidal and sometimes the transverse mercator).  

3.2.1 Mercator  

This is a conformal map, based on a tangent cylinder wrapped around the equator. 

Straight lines on this projection are rhumb lines (i.e. the track followed by a 

course of constant bearing). The following properties affect this projection:  

 <,'lon<gitude>',( [min max] | center)>  

Either longitude limits can be set, or a central longitude defined implying a global 

map.  

 <,'lat<itude>', ( maxlat | [min max])>  

Latitude limits are most usually the same in both N and S latitude, and can be 

specified with a single value, but (if desired) unequal limits can also be used. DO 



NOT USE MERCATOR FOR A MAP THAT DOES NOT CONTAIN THE 

EQUATOR!!!  

3.2.2 Miller Cylindrical  

This projection is neither equal-area nor conformal, but "looks nice" for world 

maps. Properties are the same as for the Mercator, above.  

 

3.2.3 Cylindrical Equal-Area 

An equal-area projection. You really shouldn't use this one, since it greatly 

distorts shapes near the poles, but it is included here for completeness.  

3.2.4 Equidistant cylindrical  

This projection is neither equal-area nor conformal. It consists of equally-spaced 

latitude and longitude lines, and is very often used for quick plotting of data. It is 

included here simply so that such maps can take advantage of the grid generation 

routines. Also known as the Plate Carree. Properties are the same as for the 

Mercator, above.  

3.2.5 Oblique Mercator  

The oblique mercator arises when the great circle of tangency is arbitrary. This is 

a useful projection for, e.g., long coastlines or other awkwardly shaped or aligned 

regions. It is conformal but not equal area. The following properties govern this 

projection:  

  

    <,'lon<gitude>',[ G1 G2 ]>   

    <,'lat<itude>', [ L1 L2 ]>  

     

Two points specify a great circle, and thus the limits of this map (it is assumed 

that the region near the shortest of the two arcs is desired). The 2 points (G1,L1) 



and (G2,L2) are thus at the center of either the top/bottom or left/right sides of the 

map (depending on the 'direction' property).  

  

   <,'asp<ect>',value>  

    

This specifies the size of the map in the direction perpendicular to the great circle 

of tangency, as a proportion of the length shown. An aspect ratio of 1 results in a 

square map, smaller numbers result in skinnier maps. Aspect ratios >1 are 

possible, but not recommended.  

  

    <,'dir<ection>',( 'horizontal' | 'vertical' )  

This specifies whether the great circle of tangency will be horizontal on the page 

(for making short wide maps), or vertical (for tall thin maps).  

 

WARNING - at SOME times, for certain combinations of G1/G2 L1/L2 

endpoints, the coastline mapping algorithms fail because of a numerical instability 

affecting the mapping of points on the opposite side of the world - you can see 

weird lines going across your map when you try to plot a coastline. The work-

around for this is to alter the G1/G2 or L1/L2 slightly.  

3.2.6 Transverse Mercator  

The Transverse Mercator is a special case of the oblique mercator when the great 

circle of tangency lies along a meridian of longitude, and is therefore conformal. 

It is often used for large-scale maps and charts. The following properties govern 

this projection:  

    <,'lon<gitude>',[min max]>  

    <,'lat<itude>',[min max]>  



     

These specify the limits of the map.  

  

    <,'clo<ngitude>',value>  

     

Although it makes most sense in general to specify the central meridian as the 

meridian of tangency (this is the default), certain map classification systems 

(noteably UTM) use only a fixed set of central longitudes, which may not be in 

the map center.  

  

    <,'rec<tbox>', ( 'on' | 'off' )>  

     

The map limits can either be based on latitude/longitude (the default), or the map 

boundaries can form an exact rectangle. The difference is small for large-scale 

maps. Note: Although this projection is similar to the Universal Transverse 

Mercator (UTM) projection, the latter is actually ellipsoidal in nature.  

3.2.7 Universal Transverse Mercator (UTM)  

UTM maps are needed only for high-quality maps of small regions of the globe 

(less than a few degrees in longitude). This is an ellipsoidal projection. Options 

are similar to those of the Transverse Mercator, with the addition of  

     <,'zon<e>', value 1-60>  

     

     <,'hem<isphere>',value 0=N,1=S>  

      

These are computed automatically if not specified. The ellipsoid defaults to 

'normal', a spherical earth of radius 1 unit, but other options can also be chosen 

using the following property:  

  

    <,'ell<ipsoid>', ellipsoid> 

     

For a list of available ellipsoids try m_proj('set','utm'). 

The big difference between UTM and all the other projections is that for 

ellipsoids other than 'normal' the projection coordinates are in meters, so-called 

"easting" and "northing". To take full advantage of this it is often useful to call 

m_proj with 'rectbox' set to 'on' and not to use the long/lat grid generated by 

m_grid (since the regular matlab grid will be in units of meters).  



 

3.2.8 Sinusoidal  

This projection is usually called "pseudo-cylindrical" since parallels of latitude 

appear as straight lines, similar to their appearance in cylindrical projections 

tangent to the equator. However, meridians curve together in this projection in a 

sinusoidal way (hence the name), making this map equal-area.  

3.2.9 Gall-Peters  

Parallels of latitude and meridians both appear as straight lines, but the vertical 

scale is distorted so that area is preserved. This is useful for tropical areas, but the 

distortion in polar areas is extreme.  

3.3 Conic Projections  

Conic projections result from projecting onto a cone wrapped around the sphere. The 

vertex of the cone lies on the rotational axis of the sphere. The cone is either tangent at a 

single latitude, or can intersect the sphere at two separated latitudes. It is a useful 

projection for mid-latitude areas of large east-west extent. The following properties affect 

these projections:  

  

  <,'lon<gitude>',[min max]>  

  <,'lat<itude>',[min max]>  

These specify the limits of the map.  



  

  <,'clo<ngitude>',value>  

   

The central longitude appears as a vertical on the page. The default value is the mean 

longitude, although it may be set to any value (even one outside the limits).  

  

  <,'par<allels>',[lat1 lat2]>  

   

The standard parallels can be specified. Either one or two parallels can be given:  

  

  <,'rec<tbox>', ( 'on' | 'off' )>  

The default is a parallels at 1/3 and 2/3 of the latitudinal range.  

The map limits can either be based on latitude/longitude (the default), or the map 

boundaries can form an exact rectangle which contain the given limits. Unless the region 

being mapped is small, it is best to leave this 'off' .  

The default is to use a spherical earth model for the mapping transformations. However, 

ellipsoidal coordinates can also be specified. This tends to be useful only for doing 

coordinate transformations (e.g., if a particular gridded database in in this kind of 

projection, and you want to find lat/long data), since the difference would be impossible 

to see by eye on a plot. The particular ellipsoid used can be chosen using the following 

property:  

  

    <,'ell<ipsoid>', ellipsoid> 

     

For a list of available ellipsoids try m_proj('set','albers').  

Finally, if you just want to use M_Map as an engine to transform between projected 

coordinates in some database and lat/long, it is useful to be able to explicitly specify the 

origin of the coordinate system that was originally used (origins are sometimes set at the 

lower boundary of a projection so that all Y values are positive). This can be done be 

setting:  

  

    <,'ori<gin>', [long lat]> 

     

But note that "false eastings" and "false northings" are not handled by m_proj, instead 

you must correct for them explicitly using  

     [long,lat]=m_xy2ll(x-false_easting,y-false_northing); 

     

if you are trying to do this. 

3.3.1 Albers Equal-Area Conic  



This projection is equal-area, but not conformal  

3.3.2 Lambert Conformal Conic  

This projection is conformal, but not equal-area. 

 

3.4 Miscellaneous global projections  

There are a number of projections which don't really fit into any of the above categories. 

Mostly these are global projections (i.e. they show the whole world), and they have been 

designed to be "pleasing to the eye". I'm not sure what use they are in general, but they 

make nice logos!  

3.4.1 Hammer-Aitoff  

An equal-area projection with curved meridians and parallels.  

 

3.4.2 Mollweide  



Also called the Elliptical or Homolographic Equal-Area Projection. Parallels are 

straight (and parallel) in this projection. 

Note that example 4 shows a rather sophisticated use for viewing the oceans, 

designed to reduce distortion.  

 

A more standard map can be made using 

    m_proj('mollweide'); 

    m_coast('patch','r'); 

    m_grid('xaxislocation','middle'); 

     

3.4.3 Robinson 

Not equal-area OR conformal, but supposedly "pleasing to the eye". 

 

https://www.eoas.ubc.ca/~rich/map.html#e4


3.5 Yeah, but which projection should I use? 

Well, it depends really on how large an area you are mapping. Usually, maps of the 

whole world are Mercator, although often the Miller Cylindrical projection looks better 

because it doesn't emphasize the polar areas as much. Another choice is the Hammer-

Aitoff or Mollweide (which has meridians curving together near the poles). Both are 

equal-area. It's probably not a good idea to use these projections for maps that don't have 

the equator somewhere near the middle. The Robinson projection is not equal-area or 

conformal, but was the choice of National Geographic (for a while, anyway), and also 

appears in the IPCC reports. 

If you are plotting something with a large north/south extent, but not very wide (say, 

North and South America, or the North and South Atlantic), then the Sinusoidal or 

Mollweide projections will look pretty good. Another choice is the Transverse Mercator, 

although that is usually used only for very large-scale maps (i.e., ones covering a very 

small area).  

For smaller areas within one hemisphere or other (say, Australia, the United States, the 

Mediterranean, the North Atlantic) you might pick a conic projection. The differences 

between the two available conic projections are subtle, and if you don't know much about 

projections it probably won't make much difference which one you use.  

If you get smaller than that, it doesn't matter a whole lot which projection you use. One 

projection I find useful in many cases is the Oblique Mercator, since you can align it 

along a long (but narrow) coastal area. If map limits along lines of longitude/latitude are 

OK, use a Transverse Mercator or Conic Projection. The UTM projection is also useful if 

you want to make a grid in meters, since the projection coordinates (i.e., "eastings and 

northings") are in meters.  

Polar areas are traditionally mapped using a Stereographic projection, since everyone 

seems to think it looks nice to have a "bullseye" pattern of latitude lines (the fact that 

lines of longitude come together at the poles also makes them an almost irresistable 

destination for polar scientists and explorers).  

If you want to get a quick idea of what any projection looks like, it is simple to do so - 

default parameters for all functions are set for a "typical" usage. For example, to see a 

stereographic map, try:  

  m_proj('stereographic');  % Example for stereographic projection 

  m_coast; 

  m_grid; 

   

3.6 Map scales  

M_Map usually scales the map so that it fits exactly within the current axes. If you just 

want a nice picture (which is mostly the case) then this is exactly what you need. On the 

other hand, sometimes you want to print things out at some exact scale (i.e. if you really 

much prefer sitting at your desk with a ruler and a piece of paper trying to figure out how 

far apart Bangkok and Tokyo are). Use the m_scale primitive for this - for a 1:250000 

map, call  

  m_scale(250000); 



   

after you have drawn everything (Be careful - a 1:250000 map of the world is a lot bigger 

than 8.5"x11" sheet of paper).  

This option is usually only useful for large-scale maps, i.e. maps of very small areas).  

If you wish to know the current scale, calling m_scale without any parameters will 

calculate and return that value.  

To return to the default scaling call m_scale('auto').  

(PS - If you do want to find distances from Bangkok to anywhere, plot an azimuthal 

equidistant projection of the world centered on Bangkok (13 44'N, 100 30'E), and choose 

a fairly small scale, like 1:200,000,000). Another option would be to use range rings, see 

example 11. 

3.7 Map coordinate systems - geographic and geomagnetic. 

Latitude/Longitude is the usual coordinate system for maps. In some cases UTM coords 

are also used, but these are really just a simple transformation based on the location of the 

equator and certain lines of longitude. On the other hand, there are occasions when a 

coordinate system based on some other set of axes is useful. For example, in space 

physics data is often projected in coordinates based on the magnetic poles. M_Map has a 

limited capability to deal with data in these other coordinate systems. m_coord allows 

you to change the coordinate system from geographic to geomagnetic, using data 

provided by the 13th International Geomagnetic Reference Field (IGRF-13).  

The following code gives you the idea - grids and boxes are shown in the two different 

coordinate systems:  

lat=[25*ones(1,100) 50*ones(1,100) 25]; % Outline of a box 

lon=[-99:0 0:-1:-99 -99]; 

 

subplot(121); 

m_coord('IGRF-geomagnetic',datenum(2000,1,1)); % Treat all lat/longs as 

geomagnetic 

                                               % with coordinate system 

for the year  

                                               % 2000 

m_proj('stereographic'); 

m_coast('patch',[.5 1 .5],'edgecolor','none'); 

m_grid; 

m_line(lon,lat,'color','r','linewi',3);   % "lat/long" assumed 

geomagnetic ... 

                                          %     ... on the geomagnetic 

map 

m_coord('geographic');                    % Switch to assuming 

geographic 

m_line(lon,lat,'color','b','linewi',3');  % Now they are treated as 

geographic 

   

subplot(122);  

m_coord('geographic');                    % Define all in geographic  

m_proj('stereographic');  

m_coast('patch',[.5 1 .5],'edgecolor','none');  

m_grid;  

https://www.eoas.ubc.ca/~rich/map.html#e11
https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html


m_line(lon,lat,'color','b','linewi',3);  

m_coord('IGRF-geomagnetic',datenum(2000,1,1)); % Now specify 

geomagnetic coords 

m_line(lon,lat,'color','r','linewi',3); 

 

Note that this option is not used very much, hence is not fully supported. In particular, 

filled coastlines may not work properly in all projections.  

If you just want to convert a set of coordinates between geographic and geomagnetic, you 

can do this without setting a projection first as long as you call m_coord to define the 

geomagnetic coordinate system. For example: 

m_coord('IGRF-geomagnetic',datenum(2019,6,1));  % define the coord 

system 

[gLON,glAT]=m_geo2mag(LON,LAT);   % Convert geographic to geomagnetic 

[LON,LAT]=m_mag2geo(gLON,gLAT);   % This is the inverse 

 

4 Coastlines and Bathymetry  

M_Map includes two fairly simple databases for coastlines and global elevation data. Highly-

detailed databases are not included in this release because they are a) extremely large and b) 

extremely time-consuming to process (loops are inherently involved). If more detailed maps are 

required, section 8 and section 9 give instructions on how to add some freely-available high-

resolution datasets.  

4.1 Coastline options  

M_Map includes a 1/4 degree resolution coastline database. This is suitable for maps 

covering large portions of the globe, but is noticeably coarse for many large-scale 

applications. The M_Map database is accessed using the m_coast function. Coastlines 

can be drawn as simple lines, using  

  m_coast('line', ...optional line arguments ); 

   

or 

  m_coast( optional line arguments ); 

   

https://www.eoas.ubc.ca/~rich/mapug.html#p8
https://www.eoas.ubc.ca/~rich/mapug.html#p9


where the optional arguments are all the standard arguments for specifying line style, 

width, color, etc. Coastlines can also be drawn as filled patches using 

  m_coast('patch', ...optional patch arguments ); 

   

where the optional trailing arguments are the standard patch properties. For example, 

  m_coast('patch',[.7 .7 .7],'edgecolor','g'); 

   

draws gray land, outlined in green. When patches are being drawn, lakes and inland seas 

are given the axes background colour. 

Many older (ocean) maps are created with speckled land boundaries, which looks very 

nice in black and white. You can get a speckled boundary with  

  m_coast('speckle', ....optional m_hatch arguments); 

   

which calls m_hatch. This only looks nice if there aren't too many very tiny islands 

and/or lakes in the image (see Example 13). 

Note that line coastlines are usually drawn rather rapidly. Filled coastlines take 

considerably more time to generate (because map limits are not necessarily rectangular, 

clipping must be accomplished in m-files).  

4.2 Topography/Bathymetry options  

M_Map can access a 1-degree resolution global elevation database (actually, this 

database is is included in the Matlab distribution, used by 

$MATLAB/toolbox/matlab/demos/earthmap.m). A contour map of elevations at default 

levels can be drawn using  

m_elev; 

Different levels can also be specified:  
m_elev('contour',LEVELS, optional contour arguments); 

For example, if you want all the contours to be dark blue, use:  
m_elev('contour',LEVELS,'edgecolor','b'); 

Filled contours are also possible:  
m_elev('contourf',LEVELS, optional contourf arguments); 

Finally, if you want to simply extract the elevation data for your own purposes,  
[Z,LONG,LAT]=m_elev([LONG_MIN LONG_MAX LAT_MIN LAT_MAX]); 

returns rectangular matrices for depths Z at locations LONG,LAT.  

 

5 Customizing axes  
5.1 Grid lines and labels  

In order to get the perfect grid, you may want to experiment with different grid options. 

Two functions are useful here, m_grid which draws a grid, and m_ungrid which erases 

the current grid (but leaves all coastlines and user-specified data alone). Try  

https://www.eoas.ubc.ca/~rich/map.html#12._Speckle


  m_proj('Lambert'); 

  m_coast; 

  m_grid; 

   

to get a Lambert conic projection of North America. Now try  

  m_ungrid 

   

The coastline is still there, but the grid has disappeared and the axes shows raw X/Y 

projection coordinates. Now, try this:  

  

m_grid('xtick',10,'tickdir','out','yaxislocation','right','fontsize',7)

; 

   

The various options that can be changed include:  

    'box',( 'on' | 'off' | 'fancy' )  

     

which specifies whether or not an outline box is drawn. Three types of outline boxes are 

available: 'on', the default, is a a simple line. Two types of fancy outline boxes are 

available. If 'tickdir' is 'in', then alternating black and white patches are made (see 

example 2). If 'tickdir' is set to 'out', then a more complex line pattern is drawn (see 

example 6). Fancy boxes are in general only available for maps bounded by lat/long 

limits (i.e. not for azimuthal projections), but if this option is chosen inappropriately a 

warning message is issued. 

The number/location of ticks on the longitude grid is given by  

   'xtick',( num | [value1 value2 ...]) 

    

If a single number is specified, grid lines/values are drawn for approximately that number 

of equally-spaced locations (the number is only approximate because the M_GRID 

attempts to find "nice" intervals, i.e. it rounds to even increments). Exact locations can be 

specified by using a vector of location values. There is an analogous 'ytick' property. 

Special labels can be specified using  

   'xticklabels',[label1;label2 ...] 

    

Labels can either be numerical values (which are then formatted by M_GRID), or string 

values which are used without change. There is an analogous 'yticklabels' property.  

Longitude labels are either middled onto the ends of their respective grid lines (and 

drawn perpendicular to those lines), or are drawn extending outwards from the ends of 

those lines.  

   'xlabeldir', ( 'middle' | 'end' ) 

    

https://www.eoas.ubc.ca/~rich/map.html#e2
https://www.eoas.ubc.ca/~rich/map.html#e6


There is an analogous 'ylabeldir' property. 

The lengths of tickmarks (as a fraction of plot width) is specified using  

   'ticklen',value   

   

and their direction is set inwards or outwards with 

   'tickdir',( 'in' | 'out' ) 

    

If 'box' is set to 'fancy', the tickdir specifies the form of the fancy outline box (their 

is the 'in' version and the 'out' version).  

Axis labels can be produced either in decimal degrees ('dd') or degrees-minutes ('dm', 

default). The 'da' option is an abbreviated degrees-minutes format without degree marks 

or the N/S/E/W letters appended: 

  'tickstyle',( 'dd' | 'da' |  'dm' ) 

   

A number of other (obvious) properties can also be set: 

'color',colorspec   

'gridcolor',colorspec 

'backgroundcolor',colorspec   

'linewidth', value   

'linestyle', ( linespec | 'none' )   

'fontsize',value   

'fontname',name 

Finally, 

  

  'xaxisLocation',( 'bottom' | 'middle' | 'top' )  

   

specifies where the X-axis will be drawn, either at the bottom (southermost) end, at the 

top (northernmost) end, or in the middle (note - for southern hemisphere maps, especially 

those containing the south pole, setting this to 'top' is recommended), and 

   'yaxisLocation',( 'left' | 'middle' | 'right' )  

   

specifies where the Y-axis will be drawn, either at the left (westernmostmost) end, at the 

right (easternmost) end, or in the middle. 

Note: if you are using the UTM projection, and you want to have a grid with eastings and 

northings, call m_utmgrid AFTER calling m_grid. This will draw a UTM grid, 

independent of the lat/long grid provided by a call to m_grid. Again, you can customize 

many aspects of the grid by setting appropriate properties. 



 

5.2 Titles and x/ylabels  

Titles and x/ylabels can be added to maps using the title and x/ylabel functions in the 

usual way (this is a change from v1.0 in which the 'visible' property had to be 

explicitly set to 'on'; this is now done within m_grid).  

5.3 Legend Boxes  

A legend box can be added to the map using m_legend. Only some of the functionality of 

legend is currently included. The legend box can be dragged and dropped using the 

mouse button.  

5.4 Scale Bars  

A scale bar can be added to the map using m_ruler. The bar is drawn horizontally or 

vertically, and will create a 'nice' number of ticks (although this can be changed with 

another calling parameter). The location is specified in normalized coordinates (i.e. 

between 0 and 1) so you can adjust placement on the map, see Examples 9 and 10. It is 

probably best to call m_ruler AFTER calling m_grid since m_grid resets the 

normalization.  

WARNING - the scalebar is probably not useful for any global (i.e. whole-world) or even 

a significant-part-of-the-globe map, because the actual ground scale is often quite 

distorted in some parts of the map, but I won't stop you using it. Caveat user!  

https://www.eoas.ubc.ca/~rich/map.html#e9
https://www.eoas.ubc.ca/~rich/map.html#e10


 

5.5 North Arrow  

An arrow pointing north is sometimes useful to have, and this can be added using 

m_northarrow. There are a number of different types of arrows available, see Examples 

6, 10, and 12. The arrow is located at a specified longitude/latitude, which MAY be 

outside the map borders (i.e. it isn't clipped to the map boundaries), and is sized in units 

of degrees of latitude. The arrow is drawn as a patch, so the usual patch properties can be 

set. For example,  

 m_northarrow(-150,0,40,'type',4,'linewi',.5); 

  

draws the type 4 arrow, with thin outlines, as below: 

 

https://www.eoas.ubc.ca/~rich/map.html#e6
https://www.eoas.ubc.ca/~rich/map.html#e6
https://www.eoas.ubc.ca/~rich/map.html#e10
https://www.eoas.ubc.ca/~rich/map.html#e12


 

6 Adding your own data  

The purpose of M_Map is to allow you to map your own data! Once a suitable grid and 

(possibly) a coastline have been chosen, you can add your own lines, text, or contour plots using 

built-in M_Map drawing functions which handle the conversion from longitude/latitude 

coordinates to projection coordinates. These drawing functions are very similar to the standard 

Matlab plotting functions, and are described in the next section.  

Sometimes you may want to convert between longitude/latitude and projection coordinates 

without immediately plotting the data. This might happen if you want to interactively select 

points using ginput, or if you want to draw labels tied to a specific point on the screen rather 

than a particular longitude/latitude. Projection conversion routines are described in sections 5.5 

and 5.6. Once raw longitude/latitude coordinates are converted into projection coordinates, 

standard Matlab plotting functions can be used.  

Maps are drawn to fit within the boundaries of the plot axes. Thus their scale is somewhat 

arbitrary. If you are interested in making a map to a given scale, e.g. 1:200000 or something like 

that, you can do so by using the m_scale primitive, see section 2.6 . The data units are the 

projection coordinates, which are distances expressed as a fraction of earth radii. To get a map 

"distance" between two points, use the Cartesian distance between the points in the projection 

coordinate system and multiply by your favourite value for the earth's radius, usually around 

6370 km (exception - the UTM projection uses coordinates of northing and easting in meters, so 

no conversion is necessary).  

CAUTION: One problem that sometimes occurs is that data does not appear on the plot due to 

ambiguities in longitude values. For example, if plot longitude limits are [-180 180], a point with 

a longitude of, say, 200, may not appear in cylindrical and conic projections. THIS IS NOT A 

BUG. Handling the clipping in "wrapped around" curves requires adding points (rather than just 

moving them) and is therefore incompatible with various other requirements (such as keeping 

input and output matrices the same size in the conversion routines described below).  

6.1 Drawing lines, text, arrows, patches, hatches, speckles and contours  

For most purposes you do not need to know what the projection coordinates actually are - 

you just want to plot something at a specified longitude/latitude. Most of the time you 

when you want to plot something on a map you want to do so by specifying 

longitude/latitude coordinates, instead of the usual X/Y locations. To do so in M_Map, 

replace calls to plot, line, text, quiver, patch, annotationcontour, and 

contourf with M_Map equivalents that recognize longitude/latitude coordinates by 

prepending "m_" to the function name. For example,  

  m_plot(LONG,LAT,...line properties)      % draw a line on a map 

(erase current plot)  

  m_line(LONG,LAT,...line properties)      % draw a line on a map  

  m_text(LONG,LAT,'string')                % Text    

  m_quiver(LONG,LAT,U,V,S)                 % A quiver plot  

  m_patch(LONG,LAT,..patch properties)     % Patches.   

  m_annotation('line',LON,LAT)             % Annotation 

   

https://www.eoas.ubc.ca/~rich/mapug.html#p5.1
https://www.eoas.ubc.ca/~rich/mapug.html#p5.5
https://www.eoas.ubc.ca/~rich/mapug.html#p5.6
https://www.eoas.ubc.ca/~rich/mapug.html#p2.6


Each of these functions will handle the coordinate conversion internally, and will return a 

vector of handles to the graphic objects if desired. The only difference between these 

functions and the standard Matlab functions is that the first two arguments MUST be 

longitude and latitude.  

One caveat applies to m_patch. For compatibility reasons this uses the same code that 

applies to coastline filling. Coastlines come either as either "islands" or "lakes", and 

M_Map keeps track of the difference by assuming curves are oriented so that the filled 

area ("land") is always on the right as we go around the curve. This is slightly different 

than the convention used in patch which always fills the inside. Keeping track of this 

difference is relatively straightforward in a Cartesian system, but not so easy in spherical 

coordinates. In the absence of other information m_patch tries to do the right thing, but 

(especially when the patch intersects a map boundary) it can get confused. If a patch isn't 

filling correctly, try reversing the order of points using flipud or fliplr.  

Data gridded in longitude and latitude can also be contoured:  

  m_contour(LONG,LAT,VALUES) 

  m_contourf(LONG,LAT,VALUES) 

   

Again, these functions will return handles to graphics objects, allowing (for example) the 

drawing of labelled contours:  

  [cs,h]=m_contour(LONG,LAT,VALUES) 

  clabel(cs,h,'fontsize',6); 

   

Fancy arrows (i.e. with width, head shape, and colour specifications) can be generated 

using m_vec.m . See the on-line help for more details about the use of m_vec. 

You can also get hatched areas by calling m_hatch:  

   

  m_hatch('single',LONG,LAT,...hatch properties)    % Interior Single 

Hatches.  

  m_hatch('cross',LONG,LAT,...hatch properties)     % Interior Crossed 

Hatches.  

   

Note that this call does not generate the edge lines (an additional m_line is required for 

this. In addition, we can speckle the inside edges of patches using: 

  

  m_hatch('speckle',LONG,LAT,...speckle properties)  % Speckled edges. 

   

See the on-line help and/or Example 12 for more details about using m_hatch. 

https://www.eoas.ubc.ca/~rich/map.html#e12


 

6.2 Drawing images and pcolor  

Gridded data in matlab can be handled with either a) pcolor, usually for small grids, 

whose vertices are specified in matrices the same size as that of the data, and where you 

might want to shade across each grid cell, or b) image, often for much larger pixellated 

datasets where each value will be mapped to a colour in rectangular cells all of which are 

the same size. pcolor is often used for datasets that one might also handle with contour 

or contourf, while image is used for photographs and the like. 

1. In M_Map, if you have a georeferenced image in lat/long coordinates (i.e. each 

data row is along a line of constant latitude, each column a line of equal 

longitude), then you can use m_image. That is,  
2. m_image(LON,LAT,DATA) 

will accept data in which LON and LAT are either two-element vectors which give 

the coordinates of the first and last row or column, or are vectors the same size as 

the number of rows or columns of DATA (this is a little more flexible than image 

since it means that rows can be unequally spaced in longitude). The data matrix 

will be regridded into map coordinates and displayed using image. Generally this 

will be a good idea only when the data pixels are already too small to see (see this 

example). Note that DATA can either by an NxM double precision floating point 

matrix (say, a bathymetry database), or an NxMx3 uint8 "truecolor" image (say, 

one derived from optical remote sensing). 

It is also sometimes useful to use m_image solely to transform the data in an NxM 

array, following it with a m_shadedrelief call to actually display the data  

[IM,X,Y]=m_image(LON,LAT,DATA); 

m_shadedrelief(X,Y,IM,'coords','map') 

Note that you should set the figure background colour (e.g., 

set(gcf,'color','w')) before calling m_image because pixels that appear 

outside the map boundaries are set to that background colour - see This example  

https://www.eoas.ubc.ca/~rich/map.html#17._goog
https://www.eoas.ubc.ca/~rich/map.html#17._goog
https://www.eoas.ubc.ca/~rich/map.html#17._shaded2


 

3. If your georeferenced image is in lat/long coordinates, but all points in a row do 

NOT have the latitude, then use m_pcolor with shading flat. This is 

reasonably satisfactory (although it can be slow for large images), but you 

SHOULD offset your coordinates by one-half of the pixel spacing. This is 

because of the different behaviors of pcolor and image when given the same 

data. (see this example).  

Note: you must be careful with m_pcolor near map boundaries. Ideally one would 

want data to extend up to (but not across) a map boundary (i.e. polygons are 

clipped). However, due to the way in which matlab handles surfaces this is not 

easily done. Instead - unless you are using a simple cylindrical or conic projection 

- you will probably get a ragged edge for the coloured surface.  

Also, be aware that image will center the (i,j) pixel at the location of the (i,j)th 

entry of the X/Y matrices,as long as these matrices are regular in their spacing. If 

they are irregular, then pixels are spaced evenly between the 1st and last entries in 

the matrix. However p_color with shading flat will draw a panel between the 

(i,j),(i+1,j),(i+1,j+1),(i,j+1) coordinates of the X/Y matrices with a color 

corresponding to the data value at (i,j). Thus everything will appear shifted by one 

half a pixel spacing. This can be avoided with shading interp but then the 

computational time to create an image is greatly increased.  

4. If your figure has already been placed in some projection, and if you know the 

exact parameters of that projection, you can probably use a straight image call 

and then overplot an M_Map map. For example, polar satellite images are often 

given on an equally-spaced grid in a polar stereographic projection. In this case 

you should use m_ll2xy to get the screen coordinates of the image corners, then 

use those points in an image() call before overplotting your data. See in 

particular this example.  

https://www.eoas.ubc.ca/~rich/map.html#7._SAR
https://www.eoas.ubc.ca/~rich/map.html#3._Aerial_photos


HINT - check to see that coastlines overplot in the right place to make sure this is 

working correctly.  

 

6.3 Drawing shaded relief maps  

Shaded relief is a visualization feature used a lot by geologists and geophysicists, but 

generally not by oceanographers (although perhaps it should be). The general idea is that 

instead of just contouring a map (with different heights shown as different colours), as in 

the left example below, you additionally shade the surface as if it was a 3D object, lit 

from a single direction, say, (as a default) from the upper left corner of the map, as in the 

right example below. Slopes facing towards the upper left corner are brighter, and those 

facing away are darker.  

Shaded relief thus lets you visually represent both the low-wavenumber variation (blobs 

of different colours), as well as the high-wavenumber variation in an image (since slopes 

are a derivative, they amplify high-wavenumber information).  



 

in M_MAP, m_shadedrelief is used to construct such a map. However, it is generally 

only useful for large scale maps covering a small area. This is because it is (essentially) a 

drop-in replacement for image showing a true-colour image (like a photograph) and 

hence can only be used when all the pixels are the same size (this means that all points 

are on a GRID in screen coordinates, and the spacing between points is always EQUAL), 

and the map axes limits are a RECTANGLE. That is:  

5. You should call m_shadedrelief only AFTER calls to colormap and caxis, 

because these are needed to determine the shading in the true-colour image. 

6. m_shadedrelief most straightforward use is as a backdrop to maps with a 

rectangular outline box - either a cylindrical projection, or some other projection 

with m_proj(...'rectbox','on'). The simplest way of not running into 

problems is  

1. if your elevation data is in LAT/LON coords, use m_proj('equidistant 
cylindrical',...) 

2. if your elevation data is in UTM coords (meters E/N), use 
m_proj('utm',...) 

7. Alternatively, you can use m_shadedrelief AFTER calling m_image (see 

Section 5.2); this can be done with ANY projection or outline box.  

m_shadedrelief accepts several options. The essence of the mapping is that slopes are 

calculated relative to a light source, and then a shading function is applied: 

       Shading = clipval*tanh(slope/gradient)  

  

where the shading increases with slope angle, up until a limiting value of about gradient 

degrees, after which shading saturates. The saturated amount of shading is set by 

clipval which is between 0 and 1, where 0 means no shading correction and 1 means 

shading to white or black. 

https://www.eoas.ubc.ca/~rich/p5.2


The direction of the lighting can also be changed, but the default upper left source 

direction seems to be an accepted standard. 

Finally, the slope calculation only works correctly if we know how to interpret x/y 

changes with Z changes. For UTM coordinate data, all 3 would be in meters. However, a 

lot of high-resolution data is provided in lat/long coordinates, and hence the x/y 

directions would have to be properly scaled. FInally, pixel locations may be in map 

coordinates. The coords option can let you specify which of the cases is in use.  

        'coo<rds>', ( 'g<eographic>'  |  'z'  |  'm<ap>' )  

For more information, see this example, this one, or this one. 

6.4 Drawing tracklines  

It is sometimes useful to annotate lines representing the time-varying location of a ship, 

aircraft, or satellite with time and date annotations. This can be done using m_track:  

  m_proj('UTM','long',[-72 -68],'lat',[40 44]); 

  m_gshhs_i('color','k'); 

  m_grid('box','fancy','tickdir','out'); 

   

  % fake up a trackline 

  lons=[-71:.1:-67]; 

  lats=60*cos((lons+115)*pi/180); 

  dates=datenum(1997,10,23,15,1:41,zeros(1,41)); 

   

  m_track(lons,lats,dates,'ticks',0,'times',4,'dates',8,... 

               'clip','off','color','r','orient','upright');   

    

 

See the on-line help for more details about the use of m_track, and the different options 

for setting fontsize, tick spacing, date formats, etc.  

While fiddling with the various parameters, it is often handy to be able to erase the 

plotted tracks without erasing the coastline and grid. This can be done using  

https://www.eoas.ubc.ca/~rich/map.html#16._shaded1
https://www.eoas.ubc.ca/~rich/map.html#17._shaded2
https://www.eoas.ubc.ca/~rich/map.html#18._shaded3


  m_ungrid track 

   

or  

  m_ungrid('track') 

   

6.5 Drawing range rings and geodesics 

One nifty thing that is sometimes useful is the ability to draw circles at a given range or 

ranges from a specific location. This can be done using m_range_ring, which has 3 

required calling parameters: LONG, LAT, RANGE, followed by any number of 

(optional) line specification property/value pairs. Example 11 illustrates how to use 

m_range_ring. 

If you want to plot circular geodesics (i.e. curves which are perpedicular to the range 

rings at all ranges), m_lldist can find both distances and points along the geodesics 

between points. Example 13 illustrates how to use m_lldist. 

If you care about the difference between great circle and ellipsoidal geodesics (a very 

very small proportion of users I would bet) then m_fdist (which computes the position at 

a given range/bearing from another), m_idist (distance and bearings between points), 

and m_geodesic (points along the geodesic) can be used with a variety of (user-

specified) ellipses. The calling sequence for these is different than for m_lldist for 

historical reasons.  

6.6 Drawing tidal ellipses and wind roses  

For oceanographers, the cyclic variation of tidal currents are shown on maps in the form 

of tidal ellipses. Use m_ellipse to draw these ellipses, passing arguments giving the 

ellipse location, lengths of semi-major and semi-minor axes, ellipse inclination and 

(optionally) the Greenwich phase. In order to interpret these ellipses, imagine that the tip 

of a velocity vector circles around this ellipse at a given frequency, in either the CW or 

CCW direction. The Greenwich phase provides the location of the velocity vector when 

astronomical forcing is at its lowest at the Greenwich meridian. 

Wind roses, on the other hand, are a way of displaying the speed and direction statistics 

of winds (or currents) irrespective of frequency. Bars extend in the direction of the 

currents, and the length of coloured segments along the bar represent the relative 

frequency of observations of a particular speed range in that direction. A background set 

of rings are "plot axes". 

The function m_windrose can be used to display such a rose on a map. Typically one 

would only use this display if there were multiple stations for which statistics are 

required; single stations (or a small number of stations) are usually shown on their own, 

in a slightly larger format. In the figure below, winter winds are seen to be generally 

southeasterly, with northwesterlies occurring less frequently along most of the Strait of 

Georgia, Canada, except at the SE end where the dominant directions are easterly or 

southerly. The background circle and rings at 2, 4, and 6% at each location for which we 

have wind statistics are made slightly transparent so that the coastline is visible through 

https://www.eoas.ubc.ca/~rich/map.html#e11
https://www.eoas.ubc.ca/~rich/map.html#e13


them in the default call. Here they have been made fully opaque. Code to make this plot 

is provided in Example 19.  

 

https://www.eoas.ubc.ca/~rich/map.html#e19


6.7 Converting longitude/latitude to projection coordinates  

If you want to use projection coordinates (perhaps you want to compute map areas, or 

distances, or you want to make a legend in the upper left corner), the following command 

converts longitude/latitude coordinates to projection coordinates.  

  

  [X,Y]=m_ll2xy(LONG,LAT, ...optional clipping arguments ) 

   

where LONG, LAT, X, and Y are matrices of the same size. Projection coordinates are 

equal to true distances near the center of the map, and are expressed as fractions of an 

earth radius. To get a distance, multiply by the radius of the earth (about 6370km). The 

exception is the UTM projection which provides coordinates of northing and easting in 

meters.  

The possible clipping arguments are  

   'clip','on'  

    

This is the default. Columns of LONG and LAT are assumed to form lines, and these are 

clipped to the map limits. The first point outside the map is therefore moved to the map 

edge, and all other points are converted the NaN.  

   'clip','off'  

    

No clipping is performed. This is sometimes useful for debugging purposes.  

  'clip','point'  

   

Points are tested against the map limits. Those outside the limits are converted to NaN, 

those inside are converted to projection coordinates. No points are moved. This option is 

useful for point data (such as station locations).  

   'clip','patch'  

    

Points are tested against the map limits. Those outside the limits changed into a point 

exactly on the limits. Those inside are converted to projection coordinates. This option 

may be useful when trying to draw patches, however it probably won't work well.  

6.8 Converting projection to longitude/latitude coordinates  

Conversion from projection coordinates to longitude/latitude is straightforward:  

  [LONG,LAT]=m_xy2ll(X,Y) 

   

There are no options.  

6.9 Computing distances between points  



Geodesic (great circle) distances on a spherical earth can be computed between pairs of 

either geographic (long/lat) or map (X/Y) coordinates using the functions m_lldist and 

m_xydist. For example,  

  DIST=m_lldist([20 30],[44 45]) 

   

computes the distance from 20E, 44N to 30E, 45N. Alternatively, if you want to compute 

the distance between two points selected by the mouse:  

  [X,Y]=ginput(2); 

  DIST=m_xydist(X,Y) 

   

will return that distance. Because of the inaccuracies implicit in a spherical earth 

approximation the true geodesic distances may differ by 1% or so from the computed 

distances.  

If you want greater accuracy, then you must calculate geodesics on an ellipsoidal earth. 

There is a very accurate numerical algorithm for doing so ( Vincenty's algorithm), which 

is implemented in the functions m_idist, m_fdist, and m_geodesic. For example, 

 [distance,a12,a21] = m_idist(lon1,lat1,lon2,lat2,spheroid) 

computes the distance in meters between two points (lon1,lat1) and (lon2,lat2) 

on the specified spheroid ('wgs84' is the default, for other options see the code or use on 

of the options shown by m_proj('get','utm')). Forward and reverse azimuths 

(bearings for the rest of us) a12 and a21 in degrees are also computed. 

m_fdist is used to get the location of a point at a given bearing and distance from a 

specified point. Example 6 shows the use of these functions to find a midpoint of a drifter 

track. 

Finally, if you want to plot a geodesic on a map, then m_geodesic can be used to 

generate a vector of points along the elliptical geodesic between two specified points. If 

you ever find yourself needing this, I'd be interested in knowing about it! 

6.10 Annotation and Mouse Input 

Adding labels and boxes to your map may be simpler with m_annotation, which lets you 

input arrow and text location using latitude/longitude coordinates and otherwise passes 

arguments through to the built-in MATLAB function annotation.m. Note that this 

function is fragile with respect to window resizing. Since the annotation coordinates are 

normalized to the window size, and the map's boundaries may move with respect to the 

window edges if you change the aspect ratio of the plot window (by, e.g., resizing the 

window with the mouse), it is best to either  

o refrain from changing the window size between the m_annotation call and a 

subsequent print call, or 

o carry out operations in the order:  
o m_proj('miller');   % Map first 

o m_coast; 

o m_grid; 

https://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
https://www.eoas.ubc.ca/~rich/map.html#6._argo


o ... 

o orient tall;        % Fix the orientation, and... 

o wysiwyg;            % make the screen version match the (future) 

printed version 

o m_annotation('textarrow',[-140 -122.6],[20 

49.35],'string','Vancouver') 

o ... 

o print 

Note that m_ginput (which works just like a better ginput, except that it returns long/lat 

coordinates) might simplify finding the correct long/lat for your annotation.  

6.11 Colour and Colourmaps  

 

The use of colour to show bathymetry/topography on a map, or values of other 

parameters displayed on a map, is often critical, and m_colmap contains a number of 

useful colourmaps to do this. These include several maps with good perceptual qualities, 

as well as a number which `look good' on geographic maps. You can generate the plot 

above, which gives examples of different calls, using: 

m_colmap demo 

What does it mean to have 'good perceptual qualities'? Nowadays most people know that 

Matlab's jet colormap has a number of shortcoming. In particular it is NOT 

PERCEPTUALLY UNIFORM - we can see fine details around the yellow colour band, 

but the wide range of blues are hard to separate.  



More modern colourmaps are designed to overcome this problem, by designing a 

gradation in colour-space which looks uniform to the human eye. One school of thought 

does away with colours altogether, in favour of what is essentially a PERCEPTUALLY 

UNIFORM single-colour scale that goes from dark to light. Examples b and h above are 

this kind of colormap (adapted from the ColorBrewer), but so is Matlab's parula (more 

or less), hot and gray. These kinds of colourmap let us distinguish 2 levels: 'high' (light) 

and 'low' (dark).  

Such simple colourmaps are not helpful for data that has a +/- sign (e.g., current 

velocities), and so for this kind of data a DIVERGING colormap (like example d above) 

is often used. Diverging colourmaps let us distinguish 3 levels: 'negative','zero', and 

'positive'. They are also good for 'below-average', 'average', and 'above-average'. 

What if we want more gradations? There is no reason why we can't have the multiple 

colours of a JET-like colourmap, which makes it much easier to identify several levels 

within an image, once we design in a perceptually uniform luminance scale. Thus we can 

create a PERCEPTUALLY UNIFORM JET colourmap. Example a above shows a 

smooth version (taken from the CET Perceptually Uniform Colour Maps toolbox), which 

shows about 5 different levels, but examples j and k also show versions with an arbitrary 

(but small) number of distinct colours which are all, to the eye, about equally different to 

one another.  

Example j is useful for false-colour satellite imagery, where values are contaminated by 

noise. The idea of the gradual blurring at boundaries between colours is that it will de-

emphasize speckles that would otherwise arise.  

Example k is useful for numerical models, or other data that is already smooth, so 

quantizing to a small number of levels will not be a problem. The sharp boundaries will 

then act a little like contours on the final image.  

Finally, m_colmap includes several specialized colormaps (examples c, f, i, and k) 

designed to show land; these are based on the ETOPO1 land colormap from the 

Cartographic Palette Archive. 

6.12 Colourbars with Contourmaps  

Matlab has the colorbar command which can be used to add a scale to smoothly-plotted 

data (see Satellite examples 1, 2 or 4) It can also be useful if you try to simulate contours 

used a stepped colourmap as in Example 14). But if you are actually showing filled 

contours, the continuous set of colours in the default colormap does not correspond with 

the small number of discrete colours shown in the contourmap. This may be important in 

figures like Example 15, 7 or 8. 

For these latter situations use m_contfbar. Typical usage is 

   m_contourf(LON,LAT,DATA,LEVELS); 

   m_contfbar(Xloc,Yloc,DATA,LEVELS); 

or 

   [CS,CH]=m_contourf(LON,LAT,DATA,LEVELS); 

   m_contfbar(Xloc,Yloc,CS,CH); 

or other calls that involve contourf like  

https://colorbrewer2.org/
https://peterkovesi.com/projects/colourmaps/
https://soliton.vm.bytemark.co.uk/pub/cpt-city/ngdc/index.html
https://www.eoas.ubc.ca/~rich/map.html#1._Global_SST
https://www.eoas.ubc.ca/~rich/map.html#2._SSMI_Ice_cover
https://www.eoas.ubc.ca/~rich/map.html#4._A_subset_of_a_global_dataset
https://www.eoas.ubc.ca/~rich/map.html#14._stepjet
https://www.eoas.ubc.ca/~rich/map.html#15._bathym
https://www.eoas.ubc.ca/~rich/map.html#7._Lambert_Conformal_Projection_with_Med
https://www.eoas.ubc.ca/~rich/map.html#16._shaded1


   [CS,CH]=m_etopo2('contourf',LEVELS); 

   m_contfbar(Xloc,Yloc,CS,CH); 

where Xloc=[X1,X2] and Yloc=Y for a horizontal scale bar at normalized height Y, with 

sides at normalized x-locations X1 and X2 (normalized means between 0 and 1). For a 

vertical scale bar, Xloc=X1 and Yloc=[Y1,Y2]. By using the same data and levels 

information, the scale bar shows the same levels as that of the filled contour image itself. 

m_contfbar can also be used with M_shadedrelief: 

   caxis([CMIN CMAX]) 

   colormap(map) 

   m_shadedrelief(LON,LAT,DATA) 

   m_contfbar(Xloc,Yloc,DATA,LEVELS); 

where you are free to choose the LEVELS as you wish. 

There are 4 additional parameter/value pairs that can be used to modify the appearance of 

the scale bar. First, the width of the bar can be set to 0.03 of the full axis width using: 

   'axfrac',.03 

and triangular endpieces (signifying data outside the region of the colour scale) can be 

added with 

   'endpiece',[ 'yes' | 'no'] 

If you don't like having a black edging line between the colours, choose the 'none' 

option: 

   'edgecolor',[colorspec | 'none'] 

and finally, it is possible to set the LEVELS vector to have levels that are outside the range 

of values in DATA. Do you want the scale bar show these levels, or to show only the levels 

that match those in the range of DATA? Specify with: 

   'levels',['set' (default) | 'match'] 

 



 

7 More complex maps  

For ideas on how to make more complex maps, see the Examples. Some of these maps are also 

included in the function m_demo.  

 

8 Removing features from a map  

Once a given map includes several elements a certain amount of fiddling is usually necessary to 

satisfy the natural human urge to give the image a certain aesthetic quality. If the image includes 

complicated coastlines which take a long time to draw (e.g. those discussed below) than clearing 

the figure and redrawing soon becomes tedious. The m_ungrid command introduced above can 

be used to selectively remove parts of the figure. For example:  

m_proj('lambert','long',[-160 -40],'lat',[30 80]); 

m_coast; 

m_range_ring(-123,49,[1e3:1e3:10e3],'color','r'); 

draws range rings at 1000km increments from my office. But I am unsatisfied with this, and 

want to redraw using only 200km increments. I can remove the effects of m_range_ring and 

redraw using: 

m_ungrid range_ring 

m_range_ring(-123,49,[200:200:2000],'color','r'); 

In general the results of m_ANYTHING can be deleted by calling m_ungrid ANYTHING. m_ungrid 

can recognize and delete specific elements by searching the 'tag' property of all plot elements, 

which is set by M_Map routines.  

The 'tag' property is also useful if you want to make your own modifications. For example, say 

you want to REMOVE every 2nd xticklabel (you like the extra lines in a grid, but not that many 

labels). You can do this with: 

handles=findobj('gca,'tag','m_grid_xticklabel'); 

delete(handles(2:2:end)); 

 

9 Adding your own coastlines  

If you are interested in a particular area and want a higher-resolution coastline than that used by 

m_coast, the best procedure is to get one of the high-resolution databases I describe below. If 

this doesn't work, first I give are some hints on how to deal with your own coastlines. 

9.1 Reading and Handling coastline data  

If you have data is stored in 2 columns (longitudes then latitudes, with line segments 

separated by a row of NaNs) in a file named "coast.dat", you can plot it (as lines) using 

the following: 

https://www.eoas.ubc.ca/~rich/map.html#examples


load coast.dat 

m_line(coast(:,1),coast(:,2)); 

Filled coastlines will require more work. First, if the coastline is in a number of discrete 

segments, you have to join them all together to make complete "islands" and "lakes". If 

you are lucky, (i.e. no lakes or anything else), you may achieve success with 

load coast.dat 

[X,Y]=m_ll2xy(coast(:,1),coast(:,2),'clip','patch'); 

k=[find(isnan(X(:,1)))]; 

for i=1:length(k)-1, 

     x=coast([k(i)+1:(k(i+1)-1) k(i)+1],1); 

     y=coast([k(i)+1:(k(i+1)-1) k(i)+1],2); 

     patch(x,y,'r'); 

 end; 

  

and then try replacing patch with m_patch.  

If this does not work (e.g., because your coastline includes "lakes"), read the comments in 

private/mu_coast, orient the curves in the desired fashion, and use m_usercoast to 

load your own data. 

9.2 ESRI Shapefiles  

A de facto standard for the interchange of vector data are ESRI shapefiles. A dataset 

comes in (at minimum) 3 files, each with the same root name but with .dbf, .shp, and 

.shx extensions. Files can contain point, line or polygon information, as well as other 

fields in a self-describing way. For more information see this description . 

Many (all?) shapefiles can be read into Matlab using m_shaperead, which returns a data 

structure containing the information in the files. However, figuring out what to do with 

the contents requires you to examine the contents of the data structure.  

You can usually at least create a simple plot of the data stored in files datafile.shp, 

datafile.shx and datafile.dbf using 

M=m_shaperead('datafile');  

clf;  

for k=1:length(M.ncst),  

     line(M.ncst{k}(:,1),M.ncst{k}(:,2));  

end;  

If the data is already in lat/long coordinates, change the line to m_line. 

9.3 Projection Conversions  

Sometimes coastline data is already provided in the coordinates of some projection. 

Usually you will want to convert this data back to lat/long by a) calling m_proj with the 

specifications of that projection, and b) calling m_xy2ll with the data you read in. 

For data in UTM coordinates, this is particularly easy. For example, for data in an area 

around Vancouver, Canada, we are told the ellipse parameters (grs80) for a particular 

dataset, so: 

https://en.wikipedia.org/wiki/Shapefile


m_proj('utm','ellipse','grs80','lat',[49+15.7/60 49+21/60],... 

        'long',[-123-15/60 -123-3/60]);       

[LONG,LAT]=m_xy2ll(eastings,northings); 

In other cases, first find the projection information which is usually provided somewhere 

- in a README, or (perhaps) a .prj file (this is especially true for shapefile 

information). Examine the .prj text file. As an example, the Cascadia DEM contains 

data in coordinates defined by a file cascadia.prj: 

--------------cascadia.prj-------------- 

Projection    LAMBERT                                                            

Zunits        NO                                                                 

Units         METERS                                                             

Spheroid      CLARKE1866                                                         

Xshift        0.0000000000                                                       

Yshift        0.0000000000                                                       

Parameters                                                                       

 41 30  0.000 /* 1st standard parallel                                           

 50 30  0.000 /* 2nd standard parallel                                           

-124 30  0.000 /* central meridian                                               

 38  0  0.000 /* latitude of projection's origin                                 

0.00000 /* false easting (meters)                                        

0.00000 /* false northing (meters)  

---------------end of file---------------- 

so to convert from projection coordinates back to lat/long you would use: 

m_proj('lambert','parallels',[41.5 50.5],'long',[-133 -116],... 

             'lat',[39 53],'false',[-124.5 38],'ellipsoid','clrk66'); 

In another example, data from WA, USA is provided in a projection specified using:  

-------------------beginning of .prj file---------- 

 PROJCS["NAD_1983_HARN_StatePlane_Washington_South_FIPS_4602_Feet", 

 GEOGCS["GCS_North_American_1983_HARN", 

 DATUM["D_North_American_1983_HARN", 

 SPHEROID["GRS_1980",6378137.0,298.257222101]], 

 PRIMEM["Greenwich",0.0], 

 UNIT["Degree",0.0174532925199433]], 

 PROJECTION["Lambert_Conformal_Conic"], 

 PARAMETER["False_Easting",1640416.666666667], 

 PARAMETER["False_Northing",0.0], 

 PARAMETER["Central_Meridian",-120.5], 

 PARAMETER["Standard_Parallel_1",45.83333333333334], 

 PARAMETER["Standard_Parallel_2",47.33333333333334], 

 PARAMETER["Latitude_Of_Origin",45.33333333333334], 

 UNIT["Foot_US",0.3048006096012192]] 

 -----------------end of file----------------------- 

and we convert data back using:  

 m_proj('lambert 

conformal','ellipsoid','grs80','par',[45.83333333333334 

47.33333333333334],... 

        'clong',-120.5,'false',[-120.5 45.33333333333334]); 

 

  [LONG,LAT]=m_xy2ll( (X-

1640416.666666667)*0.3048006096012192,Y*0.3048006096012192); 

  

https://pubs.er.usgs.gov/publication/ofr99369


9.4 Coastline Extractor  

In the past one could get high-resolution data from The Coastline Extractor, but as of 

2015 this web site has been decommissioned.  

9.5 DCW political boundaries  

As of 2011 the DCW web site has been decommissioned. The following information is retained for 

historical reasons only. New users see the next section on Natural Earth.  

Files containing political boundaries for various countries and US states can be 

downloaded from http://www.maproom.psu.edu/dcw/. Select an area and choose the 

"download points" option (rather than "download data"). Once downloaded to your 

machine use m_plotbndry to access and plot the desired boundary. For example, if you 

downloaded various US states into a subdirectory "states:,  

  m_plotbndry('states/arizona','color,'r') 

   

would plot arizona on the current map. 

9.6 Natural Earth Political Boundaries  

Political Boundary info is available in shapefile format from Natural Earth. Download the 

shapefiles for areas you are interested in and use m_shaperead as described above. 

9.7 GSHHS(G) high-resolution coastline database  

When drawing maps there is always a tradeoff between the execution time of the 

generating program and the resolution of the resulting map. Included in M_Map is a 1/4 

degree coastline database which can be used to generate very fast maps, with adequate 

resolution for many purposes.  

However, it is often desirable to be able to make detailed maps of limited geographic 

areas. For this purpose a higher-resolution coastline database is necessary. I have not 

included such a database in M_Map because it would greatly increase the size of the 

package. However, I have included m-files to access and use a popular high-resolution 

database called GSHHS (as of 2016 now called GSHHG).  

As distributed, GSHHG consists of a hierarchical set of databases at different resolutions. 

The lowest or "crude" resolution is not as good as the M_Map database, although it 

contains many more inland lakes. The "high" resolution consists of points about 200m 

apart. There is also an even finer "full" resolution. You can install part or all of the 

database (depending on how much disk space you have available). The "full" resolution 

occupies 90Mb of disk space, and successively coarser resolutions are smaller by about 

1/4. Thus "high" resolution occupies 21Mb, "intermediate" uses 6Mb, and "low" uses 

1.1Mb (one reason for not always using "high" resolution is that the entire 90Mb 

database must be read and processed each call, which may take some time).  

http://rimmer.ngdc.noaa.gov/mgg/coast/getcoast.html
https://www.eoas.ubc.ca/~rich/mapug.html#p8.5
http://www.maproom.psu.edu/dcw
https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
https://www.eoas.ubc.ca/~rich/mapug.html#p8.2
https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html
https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html


 

9.7.1 Installing GSHHS  

1. Go to https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhs/.  

2. Get gshhg-bin-2.3.6.zip (as of late 2017) and uncompress any or all of 

the files there - gshhs_*.b, wdb_borders_*.b, and wdb_rivers_*.b 

for coastlines, borders, and rivers respectively, in a convenient directory. 

One useful place is in m_map/data. GSHHS data format has changed 

between v1.2 and 1.3, and again for v2.0, but m_map should be able to 

figure this out. 

3. If the database files are not in subdirectory m_map/data, you must edit the 

FILNAME setting in m_gshhs.m to point to the appropriate files.  

9.7.2 Using GSHHS effectively  

The simplest calling mechanism is identical to that for m_coast (Section 3). For 

example, to draw a gray-filled high-resolution coastline, you just need 

  m_gshhs_h('patch',[.5 .5 .5]); 

   

However, execution times may be very, very long, as the entire database must be 

searched and processed. I would not recommend trying to draw world maps with 

the intermediate or high-resolution coastlines! There are two ways to speed this 

up. The first is to use a lower-resolution database, with fewer points. The second 

is useful if you are going to be repeatedly drawing a map (because, for example, 

https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhs/
https://www.eoas.ubc.ca/~rich/mapug.html#p3


it's the base figure for your work). In this case I recommend that you save an 

intermediate processed (generally smaller) file as follows: 

  m_proj ...  % set up projection parameters 

   

  % This command does not draw anything - it merely processes the  

  % high-resolution database using the current projection 

parameters  

  % to generate a smaller coastline file called "gumby" 

   

  m_gshhs_h('save','gumby'); 

   

  % Now we can draw a few maps of the same area much more quickly 

   

  figure(1); 

  m_usercoast('gumby','patch','r'); 

  m_grid; 

   

  figure(2); 

  m_usercoast('gumby','linewidth',2,'color','b'); 

  m_grid('tickdir','out','yaxisloc','left'); 

   

  etc. 

   

Note that there another way of getting this info, as well as river and border info, is 

with the m_gshhs.m function, whose first argument can be used to specify 

different options. 

m_gshhs('lc','patch','r');  % Low resolution filled coastline 

m_gshhs('fb1');             % Full resolution national borders 

m_gshhs('ir');              % Intermediate resolution rivers 

 

10 Adding your own topography/bathymetry  

A number of global and regional topography databases are available at NCAR . Several are 

available for free from their ftp site.  

As long as the data is stored in a mat-file as a rectangular matrix in longitude/latitude, then 

m_contour or m_contourf can be used to plot that data.  

10.1 Sandwell and Smith Bathymetry  

A recent new bathymetry with approximately 1km resolution in lower latitude areas is 

being used by many people. This dataset is described at 

https://topex.ucsd.edu/marine_topo/  and is available as a 134Mb binary file at 

ftp://topex.ucsd.edu/pub/global_topo_2min/ (get the file topo_X.Y.img where X.Y is the 

version number) - note as of 2017 this is now a 729Mb binary at 

ftp://topex.ucsd.edu/pub/global_topo_1min/. I have included an m-file 

(mygrid_sand2.m) which can extract portions of the data (you will have to modify path 

names within the code). Once this database (and the m-file) is installed on your 

computer, you can use it in M_Map very easily. A typical usage is as follows:  

  % Extract data 

https://dss.ucar.edu/
https://dss.ucar.edu/catalogs/free.html
https://topex.ucsd.edu/marine_topo/text/topo.html
https://topex.ucsd.edu/marine_topo
ftp://topex.ucsd.edu/pub/global_topo_2min
ftp://topex.ucsd.edu/pub/global_topo_1min


  [elevations,lat,lon]=mygrid_sand([long_west long_east lat_south 

lat_north ]); 

  % Use in M_Map command 

  m_contour(lon,lat,elevations); 

   

For some projections, you must make sure that the 'lon' values returned by 

mygrid_sand2.m fall within the range used in this projection (i.e. you may have to 

add/subtract 360). This seems to happen all the time for areas in the west (i.e. negative 

longitudes), if you forget this you often end up with bewildering error messages about 

empty vectors!  

10.2 TerrainBase 5-minute global bathymetry/topography  

THIS INFO IS KEPT FOR HISTORICAL REASONS - USE ETOPO1 (see below) 

For many purposes the elevation database accessed by M_Map provides adequate 

resolution. However, there are also many cases when more detail is desired. I have not 

included a higher-resolution database because it would greatly increase the size of the 

package. However, v1.2 includes m-files to access and plot a popular global 5-minute 

bathymetry/topography database, after a few minutes of work.  

This section provides instructions on how to download TerrainBase, and convert it from a 

56Mb ASCII file to a 18Mb binary file using m_tba2b.m. It is then straightforward to 

access and plot bathymetry from this file using m_tbase.m, which is in every way 

functionally identical to m_elev (see Section 3.2).  

TerrainBase is also available on CDrom, and is also commonly stored in netcdf (or other) 

binary format somewhere on many academic networks. If you modify m_tbase.m to 

access data from one of these sources, let me know!  

How to install TerrainBase:  

1. get and uncompress the tbase.Z file from https://dss.ucar.edu/datasets/ds759.2/ 

into the m_map directory.  

2. Run m_tba2b('PATHNAME') to store the resulting 18Mb binary file as 

PATHNAME/tbase.int.  

3. Delete the original ASCII file tbase.  

4. Edit the PATHNAME setting in m_tbase to point to the location of this file.  

That's it! Test things out with this map of the western mediterranean: 

m_proj('lambert','lon',[-10 20],'lat',[33 48]); 

m_tbase('contourf'); 

m_grid('linestyle','none','tickdir','out','linewidth',3); 

https://rda.ucar.edu/datasets/ds759.2/
https://www.eoas.ubc.ca/~rich/mapug.html#p3.2
https://rda.ucar.edu/datasets/ds759.2/
https://rda.ucar.edu/datasets/ds759.2/


 

10.3 ETOPO 2 or 1-minute global bathymetry/topography 

ETOPO is a useful database, but it has undergone a number of changes in the last few 

years. Since it seems to be released primarily as a netCDF file now it is possible 

m_etopo2 should be completely rewritten, but instead I have just modified the 

"traditional" method of using the database from binary files. Read all of the points below 

and then follow the instructions in (4): 

5. (2004-2014 instructions: now obsolete), there is a corrected higher-resolution (2 

minute) database ETOPO2. Download 

https://rda.ucar.edu/dsszone/ds759.3/etopo2_2006apr/etopo2_2006apr.raw.gz (a 

gzipped binary), gunzip it into a 116Mb file, edit the PATHNAME setting in 

m_etopo2 to point to the location of this file, and then use it in the same way as 

m_tbase and m_elev. UCAR requires users to register and the second link won't 

work without you doing this (go to first link and follow instructions).  

6. (2014-2017 instructions: mostly obsolete) In 2014, it was pointed out to me that 

the above is obsolete. First, there is a corrected 2-minute ETOPO database - 

ETOPO2v2 which you should be using instead. Now, ETOPO2v2 is a little more 

complicated, because it comes in 4 version - big-endian and little-endian, in both 

cell-centered and grid-centered versions.  

It doesn't particularly matter if you get big- or little-endian since you can modify 

the fopen line in m_etopo2 to account for this. I recommend getting the grid-

centered version, since it works "better" when you are contouring the elevations 

(it will be more likely to extend all the way up to the map edge without weird 

little 'gaps').  

https://rda.ucar.edu/datasets/ds759.3/
https://rda.ucar.edu/dsszone/ds759.3/etopo2_2006apr/etopo2_2006apr.raw.gz
https://www.ngdc.noaa.gov/mgg/global/etopo2.html


In any case, download one of the zipped binaries, unzip it, and then edit 4 lines in 

m_etopo2 to set the PATHNAME, the filename in the fopen line, as well as setting 

the last option to 'b' or 'l' for big-endian or little-endian formats. Then make 

sure the grid and resolution parameters are set appropriately. If you forget (or 

get them wrong), code may run but it won't give the right bathymetry! 

7. If you want even higher resolution bathymetry, you can also use the 1-minute 

ETOPO1. This appears to come in two versions: grid or cell-referenced, both 

little-endian. Again, I recommend the grid-referenced version 

etopo1_ice_g_i2.bin. Modify the relevant lines in m_etopo2 in the same way 

as for ETOPO2v2.  

8. (2017-present instructions: use these) As of 2017, notice that the file you want for 

ETOPO1, etopo1_ice_g_i2.bin is not available as a link from that page - 

instead they just reference a netCDF and a geo-referenced tiff version. Also, you 

will see two different versions that handle differences between the true surface 

and the top of the permanent icepacks in Greenland and Antarctica. Fear not! If 

you click on one of those, you fall into a directory page - click PARENT 

DIRECTORY, then binary, and you get into the place you want! For example, 

https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/ice_surface/grid_regi

stered/binary/ for the top-of-the-ice data. 

As in the above instructions, download the zipped binary "etopo1_ice_g_i2.zip", 

unzip it, and then edit 4 lines in m_etopo2 to set the PATHNAME, the filename in the 

fopen line, as well as setting the last option to 'b' or 'l' for big-endian or little-

endian formats (as of 2017 this file seems to be available in little-endian format 

only). Then make sure the grid and resolution parameters are set appropriately. 

If you forget (or get them wrong), code may run but it won't give the right 

bathymetry - try a quick map to test it! 

 

11 M_Map toolbox contents and description  

1. Contents.m - toolbox contents  

2. m_demo.m - demonstrates a few maps.  

User-callable functions 

1. m_proj.m - initializes projection 

2. m_coord - sets geomagnetic or geographic coordinate system  

3. m_grid.m - draws grids  

4. m_utmgrid.m - draws a UTM grid for UTM projection maps  

5. m_scale.m - forces map to a given scale  

6. m_ruler.m - draws a scale bar  

7. m_northarrow.m - draws a north arrow  

8. m_ungrid.m - erases map elements (if you want to change parameters)  

9. m_coast.m - draws a coastline  

10. m_elev.m - draws elevation data  

11. m_tbase.m - draws elevation data from high-resolution database  

12. m_etopo2.m - draws elevation data from (another) high-resolution database  

13. m_gshhs.m - draws coastline from GSHHS with specified resolution  

https://www.ngdc.noaa.gov/mgg/global/global.html
https://www.ngdc.noaa.gov/mgg/global/global.html
https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/ice_surface/grid_registered/binary/
https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/ice_surface/grid_registered/binary/
https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/ice_surface/grid_registered/binary/etopo1_ice_g_i2.zip


14. m_gshhs_c.m - draws coastline from GSHHS crude database  

15. m_gshhs_l.m - draws coastline from GSHHS low-resolution database  

16. m_gshhs_i.m - draws coastline from GSHHS intermediate-resolution database  

17. m_gshhs_h.m - draws coastline from GSHHS high-resolution database  

18. m_gshhs_f.m - draws coastline from GSHHS full resolution database  

19. m_plotbndry.m - draws a political boundary from the DCW  

20. m_usercoast.m - draws a coastline using a user-specified subset database.  

21. m_shaperead.m - reads ESRI shapefiles  

22. m_plot.m - draws line data in map coords  

23. m_line.m - draws line data in map coords  

24. m_text.m - adds text data in map coords  

25. m_legend.m - Draw a legend box  

26. m_quiver.m - draws arrows for vector data  

27. m_contour.m - draws contour lines for gridded data  

28. m_contourf.m - draws filled contours  

29. m_patch.m - adds patch data in map coords 

30. m_pcolor.m - draws pcolor surface  

31. m_image.m - draws image data 

32. m_streamline.m - draws streamlines  

33. m_annotation.m- annotation lines/boxes/text 

34. m_ginput.m - gets points in a ginput-like way (only better) 

35. m_shadedrelief.m shaded relief mapping 

 

36. m_track.m - draws annotated tracklines  

37. m_hatch - hatched or speckled hatches 

38. m_range_ring.m - draws range rings  

39. m_ellipse.m - draws tidal ellipses (most requested ocean feature!) 

40. m_windrose.m - draws wind rose diagrams at specified locations. 

41. m_ll2xy.m - converts from long/lat to map coordinates  

42. m_xy2ll.m - converts from map coordinates to long/lat 

43. m_geo2mag.m - converts from magnetic to geographic coords 

44. m_mag2geo.m - the reverse 

 

45. m_lldist.m - distance between long/lat points  

46. m_xydist.m - distance between map coordinate points 

 

47. m_fdist.m - location of point at given range/bearing along ellipsoidal earth  

48. m_idist.m - range/bearings between points on ellipsoidal earth  

49. m_geodesic.m - points on geodesics between given points on ellipsoidal earth  

50. m_tba2b.m - used in installing high-resolution elevation database.  

51. m_vec.m - fancy arrows  

52. m_windbarb.m - fancy arrows for meteorologists 

 

53. m_contfbar.m - draws colorbars for contourf plots 



54. m_colmap.m - useful perceptually uniform colourmaps 

55. mygrid_sand2.m - reads Sandwell and Smith bathymetry file 

 

56. wysiwyg.m - Sets figure window to match size/aspect of printed output 

Internal functions (not meant to be user-callable) 

1. private/mp_azim.m - azimuthal projections  

2. private/mp_cyl.m - cylindrical projections (equatorial)  

3. private/mp_conic.m - conic projections  

4. private/mp_tmerc.m - transverse cylindrical projections  

5. private/mp_utm.m - elliptical universal transverse cylindrical projections  

6. private/mp_omerc.m - oblique cylindrical projection  

7. private/mu_util.m - various utility routines  

8. private/mu_coast.m - routines to handle coastlines. 

9. private/mc_coords.m - coordinate conversion.  

10. private/mc_igrf.m - parameters for IGRF geomagnetic coord systems.  

11. private/mc_ellips.m - parameters of different ellipsoidal earth models  

12. private/clabel.m - patched version of clabel (matlab v5.1 version does not contain 

capabilities for different text properties).  

13. private/m_coasts.mat - coastline data  

14. private/igrf13coeffs.txt - database for IGRF coordinate systems  

HTML Documentation 

1. map.html - documentation intro  

2. mapug.html - users guide  

3. various .png in doc/ - examples.  

 

12 Known Problems and Bugs  

1. Lakes come out black! If plotted data is coloured white, the print changes it to black in 

output figures. In order to avoid this, set the figure background to white, i.e.  
2.     set(gcf,'color','white') 

     

3. Filled coastlines go weird. If you try to use azimuthal projections covering nearly half 

the globe, or oblique mercator projections over large areas, sometimes coastline patching 

fails (this is due to rounding errors in the projection math fpor points very near the map 

boundary). To solve this you can either  

o Adjust the projection parameters (lat/lon limits, radius, etc.) VERY SLIGHTLY 

so that the problematic points are no longer as close to the map boundary, or 

o Use line coastlines instead of patches. 

4. Generally weird-looking stuff that happens when you use filled contours. For some 

reason this has been a glory-hole for all kinds of weird bugs in MATLAB. Most of them 

relate somehow to the way in which the map background interacts with contourf patches, 

and how the 'renderer' (the internal matlab code that figures out what goes on top of 



what) works, or doesn't work. Unfortunately I can't think of way that works around the 

problem in all cases, but if you see something weird, try:  

 set(findobj('tag','m_grid_color'),'facecolor','none')  

after the  

m_grid 

call, or  

 set(gcf,'renderer','opengl');  

(under Unix you may have to do this one on starting MATLAB)  

5. Things not appearing correctly in tiff output. Pre 2014b Matlab uses ghostscript to 

covert from ps to many other formats. But their version has some problems. It may be 

better to print to postscript and do the conversion (say, to tiff) yourself. 

13 OCTAVE Compatibility Issues  

From their website: "GNU Octave is a high-level interpreted language, primarily intended for 

numerical computations. [...] The Octave language is quite similar to Matlab so that most 

programs are easily portable."  

M_Map currently runs under Octave...mostly. m_demo runs pretty much perfectly (depending on 

which version of Octave you are using). However, there are features that either don't work, or 

don't work properly. Unfortunately the rather obscure details of different functionalities that 

M_Map relies on can change from release to release; issues that were "fixed" may "break" in later 

releases. Feel free to contact me if you have problems; I may have solutions (or I may not). 

Features that don't work, or don't work well when I last tested this under Octave 6.2.0, include:  

1. m_contourf, which is really just a call to contourf, doesn't work correctly sometimes, 

because the Octave contourf does not handle NaNs properly, and NaNs can appear if data 

fields extend beyond the map boundaries and must be clipped. Even when it does work, it 

can take a VEERRRYYY LOOOONNNNGG TIIIIMMMMEEEE to run. Staggeringly 

long, sometimes. 

2. Latitude and Longitude labels don't appear to rotate, even if you specify a rotation.  

3. m_image won't work for projections other than equidistant cylindrical, because this 

requires a call to the MATLAB griddedInterpolant function. 

14 Changes since last release  

1. Moved the default location for coastline files into a >code>/data subdirectory 

2. Some minor bugfixes  

https://www.gnu.org/software/octave/

